Fluorous Chemistry in Biomolecule Synthesis, Purification, and Immobilization

Presentation Outline

- I. Introduction to Fluorous Chemistry
- **II.** Fluorous Separation Techniques
- **III.** Fluorous Peptide Synthesis
 - A. N-terminal tagging
 - **B.** Fluorous capping
 - C. Fluorous supported synthesis
- IV. Fluorous Liquid-Liquid Extraction
- V. Unpublished Results
- VI. Conclusions

What is Fluorous Technology?

- Fluorous chemistry is a novel tagging technology that separates desired molecules from complex mixtures.
- Molecules can be rendered fluorous by the attachment of perfluorocarbon domains.
- Fluorous tagged molecules can be separated from non-fluorous molecules exploiting fluorophilicity.
- Fluorous techniques are marked by high selectivity, low reactivity, and exceptional breadth

Examples of Fluorous Molecules

Compounds with permanent fluorinated domains (e.g. reagents):

Peptide context: f-HOBt, f-DCC, f-scavengers

Compounds with temporary fluorous tags (e.g. substrates):

Peptide context:
N-terminus
protecting groups
(tags); side-chain
tags; pre-tagged
amino acids;
fluorous Cterminus supports

Fluorous Separation Methods

Liquid-Liquid Extraction

- "Heavy" fluorous technique
- Generally requires large F content, ~60%

■ Fluorous Solid Phase Extraction (F-SPE)

- "Light" fluorous technique
- Separates fluorous from non-fluorous
- No fluorous solvents used

Fluorous Chromatography (F-HPLC)

- Separates fluorous from fluorous
- More fluorous = Greater retention

Fluorous Solid Phase Extraction

A Light Fluorous Technique

Confidential

Curran, D. P. Synlett. **2001**, *9*, 1488.

FSPE Dye Demonstration

Fluorous Dye (orange)

Non-fluorous Dye (blue)

1. Load sample

2. Wash non-fluorous dye with MeOH-H₂O (85:15)

3. Wash fluorous dye with MeOH

Fluorous Tags vs. Hydrophobic Tags

Fluorous compounds are hydrophobic and lipophobic.

Fluorous SPE Selectivity

Highly selective fluorous purification of complex peptide mixture

Metal catalysis

- Suzuki
- Heck
- Buchwald
- Stille
- Co, Rh

Lewis acidic

- Friedel-Crafts
- BBr₃

Redox

- LAH
- hydrogenation
- H₂O₂
- Swern

lonic

- Enolate
- Grignard,
- lithiate
- cationic

Free radical

- cyclization
- dehalogenation
- deoxygenation

Fluorous oligomer synthesis strategies

Solid-supported synthesis with fluorous tagging

- Conventional solid phase synthesis with terminal fluorous tagged monomer.
- General method to purify oligonucleotides and peptides over a broad range of polarities.
- FSPE or FHPLC used for simple pre-purification prior to final HPLC, increasing throughput.

Solid-supported synthesis with fluorous capping

- Conventional solid phase synthesis with fluorous capping of deletion sequences
- Purification by precipitation or FSPE

Solution phase synthesis with fluorous supports / tags

- Totally homogeneous chemistry
- Suitable for shorter sequences
- Potential strategies for condensations and ligations

In conventional organic synthesis, fluorous is often an attractive alternative to solid-phase. In biomolecule synthesis, it *complements* both solution- & solid-phase protocols

Fluorous Oligonucleotide Synthesis

- A fluorous phosphoramidite is used in the final coupling.
- Capture the fluorous-tagged oligonucleotide on a Fluoro-PakTM column.
- Remove the fluorous tag by on-column detritylation.
- Elute the desired oligonucleotide.

+ non-tagged impurities

Sequences as long as 100-mers have been synthesized and isolated in excellent ODU and recoveries.

RP-HPLC Progression of 100-mer

SPPS with fluorous N-terminus tagging

N-terminal Fluorous SPPS

f-Z-CI

f-MscCl

Peptide	N-tag	Purification method	Yield(%)	Purity(%)
GVWPLFLLLLALPPKAYAG	f-Z	column	35	
GCCSLPPCALNNPDYC	F-Msc	FHPLC	37	98
GCCSLPPCALINIPDIC	F-Msc	FSPE	59	91
RQIKIWFQNRRMKWKK	F-Msc	FHPLC	10	94
	F-Msc	FSPE	7	72
SELDDRADALQAGFSPFES SAAKLKRKYWWKNLK	F-Msc	FHPLC	21	99

Overkleeft, van Boom, et al. Tetrahedron Letters 2003, 44, 9013-9016

f-Msc is base labile and compatible with conventional Fmoc strategies. F-Boc and f-Z are acid labile and compatible with conventional Boc strategies.

Selectivity of Fluorous Peptide Separations

Fluorous HPLC of hydrophobic peptide is >10x better than RP-HPLC

Selectivity of Fluorous Peptide Separations

Fluorous HPLC of hydrophobic peptide is 10² better than RP-HPLC!

SPPS with fluorous capping...

Capping (continued)

Ac-NH-RAV*KVY*ADAA*EDESAEAFAEF-CONH₂ (no capping)

Ac-NH-RAV*KVY*ADAA*EDESAEAFAEF-CONH₂

Ac-NH-VEA*AID*YI*DA-CONH₂

Ac-NH-PT*GYGS*SSRRAPET-CONH₂

Oligosaccharide synthesis with fluorous capping

Tagging conducted after each coupling

Tag = Oligosaccharide —Si —
$$C_8F_{17}$$

• Tagged deletion sequences removed by FSPE (quick intermediate purification in solution phase synthesis)

Fluorous supports

$$F = F_{17}C_{8} \cap N \cap O \cap N \cap C_{8}F_{17}$$

$$F_{17}C_{8} \cap O \cap C_{8}F_{17}$$

$$F_{17}C_{8} \cap O \cap C_{8}F_{17}$$

Fluorous Supported Peptide Synthesis

(Inazu, T. et al, Chem. Comm. 2003, 972.)

Tripeptide produced in 67% yield in excellent purity using liquid-liquid extraction and final HPLC purification.

• Fluorous Supported Oligosaccharide Synthesis (Inazu, T. et al, Angew. Chem. Int. Ed. 2003, 42, 2047.)

Trisaccharide produced in 42% yield. Final purification by column chromatography after detachment from fluorous support.

Offers potential for total solution-phase synthesis with general purification protocols, and possibly for exploitation of the fluorous phase in segment condensation. These applications are very early in development, however.

Fluorous Supported Synthesis

- Absorbance at 214 nm 20 40 Retention time (min)
- Overall 70% yield over nine steps
- All reactions easily monitored

Fluorous Liquid-Liquid Extraction (FLLE)

Advantages:

- Highly selective for fluorous tagged components
- Ease of scale-up
- Fluorous solvents readily available in bulk

Disadvantages:

- Partition coefficients for single fluorous tagged molecules are low.
 - Multiple fluorous chains necessary
 - Potential environmental persistence issues
 - Cost and complexity of synthesis

Fluorous Liquid-Liquid Extraction

Current Strategy: Increase number of fluorous ponytails until desired fluorous partitioning is obtained. In other words, a substrate tuning model.

Result:

Fluorous reagents, tags, and scavengers have very high MWs increasing cost and complexity and limiting the use of fluorous LLE separations.

Hypothesis:

Solvent tuning can be used to influence fluorous partition coefficients.

Desired Result:

Useful partition coefficients leading to fluorous components with lower MWs, lower consumption of fluorous solvents, use of more benign solvents.

Alternative Fluorous Solvents

$$F_3C$$
 F_3C
 F_3C_3
 F_7
 F_9C_4
OMe

HFE-7500

HFE-7100

Atmospheric Lifetime	2.8 years	4.1 years
•	2.0 ycars	4.1 years
Ozone depletion potential	0	0
Global Warming Potential	210	450
Acute toxicity(LD ₅₀ rats)	>2000 mg/kg	>5000 mg/kg
28 day tox	None at	Increased liver activity
	1000mg/kg	at 300 mg/kg
Mutagenicity	None detected	None detected
Ecotoxicity	Very low	Very low
VOC	No	No
Bioaccumlative	No	No

Overall assessment is that these solvents have low environmental impact

Solvent Tuning Studies

$$\left(F_{13}C_{6}\right)^{PPh}$$

Α

Entry	<u>Compound</u>	Solvent system	% Fluorous	% Organic
1	Α	FC-72 / THF	<0.5	>99.5
2	Α	FC-72 / CH ₃ CN	71	29
3	Α	FC-72 / DMF	11	89
4	Α	FC-72 / 5% H ₂ O in CH ₃ CN	90	10
5	Α	FC-72 / 5% H ₂ O in DMF	94	6
6	Α	FC-72:HFE-7100/5% H ₂ O in DMF	>99.5	<0.5
7	PPh3	FC-72 / DMF	<0.5	>99.5
8	PPh3	FC-72 / 5% H ₂ O in DMF	<0.5	>99.5
9	PPh3	HFE-7100 / 5% H ₂ O in DMF	11	89

$$FC-72 = C_6F_{14}$$
 HFE-7100 = MeOC₄F₉

Solvent Tuning Studies

Entry	Compound	Solvent system	% Fluorous	% Organic
1	Α	FC-72 / CH ₃ CN	11	89
2	Α	FC-72 / MeOH	NA	NA
3	Α	FC-72 / DMF	<0.05	>99.5
4	Α	HFE-7100 / 5% H ₂ O in DMF	>99.5	<0.5
5	Α	FC-72:HFE-7100 / 5% H ₂ O in DMF	98	2
6	В	FC-72 / CH ₃ CN	<0.5	>99.5
7	В	FC-72 / DMF	<0.5	>99.5
8	В	HFE-7100 / 5% H ₂ O in DMF	6	94
9	В	FC-72:HFE-7100 / 5% H ₂ O in DMF	<0.5	>99.5

Qualitative Model for Liquid-Liquid Extractions

- Solvent miscibility proportional to distance
- P is inversely proportional to substrate distance to two solvents
- Traditional substrate tuning moves fluorous compound up and to the left
- Solvent tuning moves solvents relative to substrate
- Provides an easily tunable system for solution phase peptide synthesis

Customizable for Specific Processes

FTI Peptide Synthesis Efforts

• 1st Effort: Repeat van Boom work using f-Z and f-Msc tags

- •f-Z, not surprisingly, was found to detag during acidic cleavage from the resin
- •f-Msc was not stable at room temperature, although storage conditions have now been identified.
- Tagging of an amino acid (L or F) with f-Msc was successful, but coupling of f-Msc amino acid was poor.

Conclusion: f-Z and f-Msc not particularly good choices for removable fluorous tag

Fluorous Fmoc Peptide Synthesis

$$F_{13}C_6$$

$$C_6F_{13}$$

$$X = CI \text{ or OSu}$$

$$f\text{-Fmoc}$$

- 10 L-amino acids tagged to date with no difficulties
- "Standard" conditions using Novagel resin employed throughout
- FSPE conducted using 1:1 CH₃CN: water followed by CH₃CN

RP- HPLC Progression of F-Fmoc Peptide

FSPE purification following resin cleavage:

Fluorous Complemented SPPS

Goal: Compare standard Fmoc based SPPS to fluorous assisted SPPS.

Target 17-mer = AFAKKKVHKKEYNLGFA

Route A: Standard Fmoc synthesis with no capping

Route B: Standard Fmoc synthesis with fluorous capping at three positions

Route C: Standard Fmoc synthesis with acetyl capping and N-terminal fluorous tagging

Fluorous Complemented SPPS

Route A (standard Fmoc SPPS)

Route B (fluorous capping before FSPE)

Route C (F-Fmoc N-terminal tagging before FSPE)

Fluorous Complemented SPPS

Route B (fluorous capping before FSPE)

Route C (F-Fmoc N-terminal tagging before FSPE)

Other Potential Strategies

Solution phase peptide synthesis with fluorous capping:

Fluorous tags in segment condensation/chemical ligation

Potential Glycopeptide Synthesis

automated or manual oligosaccharide synthesis with capping

3) FSPE

Glycan synthesis with terminal fluorous tagging

> amino acid glycosylation

solution phase glycopeptide synthesis using fluorous glycan as support

Cys

1) Fmoc based peptide synthesis

2) FLLE or FSPE **FmocHN** purifications between couplings

ORf ORf glycan ORf "Native Chemical Ligation"

Fluorous based separation (FSPE, FLLE, or FLHPLC)

glycan

- Fluorous techniques provide an orthogonal purification method distinguished by its simplicity and high selectivity
- Fluorous chemistry has been effectively applied to the synthesis and purification of peptides
 - Solid phase synthesis with capping
 - Solid phase synthesis with N-terminal tagging
 - Solution phase synthesis using fluorous supports or fluorous reagents
- Fluorous techniques can be envisioned in many applications including glycopeptide synthesis, chemical ligation strategies, etc.

